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The influence of inertial effects on the flow of fluids through fracturedmedia is a topic of interest for a number of
engineering applications, particularly within the energy sector (e.g. production from gas and oil reservoirs, heat
extraction from enhanced geothermal systems, coal-bed methane production). The ‘cubic law’ can provide a
simple relationship between the hydraulic aperture of a fracture and its permeability, for Darcian flow of a given
fluid. At significant flow velocities, fracture flow becomes non-Darcian, the velocity–permeability relationship
becomes non-linear and the cubic law becomes invalid. However, for transitional flow, which retains a
component of linearity, the cubic lawmay still be applicable for initial determination of superficial velocities from
flow rate data. Here, the results of fluid flow experiments carried out for air flow through a fractured granite
sample under various pressures of confinement are presented. Analysis of the flow data using the cubic law
produced valid results for non-Darcianflowcaseswhere inertial effectsweremodest. The cubic law appears to be
applicable for flow cases that, following analysis using the cubic law, return a Forcheimer numberb1.30.
).
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1. Introduction

Numerous aspects of society are dependent on systems involving
fluid flow through fractured media. The stability of construction-,
mining- or otherwise-inducedmodifications to the natural landscape is
highly dependent on the presence of fluids in the soil and/or rockmass,
often hosted in joints, fractures or other defects. Flow through fractured
media controls production from gas and oil reservoirs in the petroleum
industry. Emerging industries within the sustainable energy sector (e.g.
enhanced geothermal energy, coal bed methane, Carbon dioxide (CO2)
sequestration in geological media) require intimate knowledge of fluid
flow through fractured media. With a view toward socially and
environmentally responsible development and exploitation of our
natural environment, an increased understanding of fluid flow through
fractured media is imperative.

Kohl et al. (1997) investigated non-Darcian flow behaviour in
fractured rock using the results of field flow tests on an enhanced
geothermal energy test site. Their manuscript endedwith the following
statement: “The importance of a general investigation of nonlaminar
hydraulic flow patterns in fractured rock should lead to new efforts in
designing laboratory… experiments with real fractures. The necessary
flow laws for the transition between Darcy and nonlaminar flow can
thereby be extended…” (Kohl et al., 1997, p. 417). Here we present a
study into the gap in knowledge that Kohl et al. (1997) recognised.

The study addresses issues arising from the influence of a
phenomenon known as ‘the inertial effect’ on the relatively poorly
understood mechanisms of fracture flow. Experimental results from air
flow tests conducted on a fractured granite specimen under triaxial test
conditions are reported. The ‘cubic law’ expression, discussed by
Witherspoon et al. (1980) for a Darcian flow in a parallel-plate model,
is used to extractflowvelocities for the experimentalwork from the flow
rate data. The applicability of the cubic law to scenarios forwhich fracture
flow has become non-Darcian is explored by interpretation of the
experimental data acquired with its application. This laboratory-based
study contributes to existing literature (numerical modelling studies)
concerning the applicability of flow laws developed for laminar flow
models to porous (Mazaheri et al., 2005) and fracture flow (Nazridoust
et al., 2006) scenarios that incorporate inertial effects.

1.1. The inertial effect

The concept of permeability is integral to the study of fluid (gas
and/or liquid) flow in fractured media. According to Darcy's Law,
permeability is constant and is dependent only on the properties of
the porous media (e.g. porosity and connectivity). However, it is now
understood that flow conditions can also influence the permeability
of a porous flow system (see Holditch and Morse, 1976; Rose, 1945;
Tek et al., 1962).

Forchheimer (1901) recognised that, as flow velocity in porous
media increases, an additional influence on the flow is introduced. He
related this behaviour to increasing frictional losses with increasing
turbulence in the flow regime. This phenomenon is often referred to as
the inertial effect. The inertial effect (represented by Forchheimer's
equation) for flow in porous media becomes more significant with an
increase in permeability, flow velocity and/or flow pressure conditions
(Ruth and Ma, 1992; Whitaker, 1996).
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The Reynolds number for flow has been widely used to quantify
the degree of influence expected for inertial effects in a flow system
(e.g. Rose, 1945; Tek et al., 1962). Bear (1972) suggest flow becomes
non-laminar (non-Darcian) for Reynolds numbers (Re) greater than
one, but that a transitional flow regime (that may display aspects of
Darcian behaviour) dominates for Re=1 to 10. His recommendations
are consistent with those of Zimmerman et al. (2004), who observed
complete inertial effects for ReN20, but recognised the influence of
‘weak’ inertial forces in producing non-linearity for fracture flow
regimes with Re=1 to 10. Hassanizadeh and Gray (1987) proposed
that non-linearity in flow through porousmedia becomes increasingly
significant with increasing Re for porous flow regimes with ReN10.
Zimmerman and Bodvarsson (1996) showed that roughness in
fracture systems leads to increased tortuosity in flow and thus non-
Darcian behaviours – relating to increased interaction between the
solid and flowing fluid – under flow conditions where they may
otherwise not be expected, thus accounting for inertial effects at low
values of Re.

2. Background theory

2.1. Darcy's Law

Darcy (1856) published the results of simple experiments carried
out to investigate the flow of water through sand. He found that the
discharge rate of water through porous sands was proportional to the
pressure drop across the flow path, with a constant of proportionality
(a resistance to flow) that was specific to the porous medium.
Neglecting gravity effects on flow, Darcy's Law for one dimensional
flow of an incompressible fluid through porous media can be
expressed as:

dP
dx

=
Q
A
μ
k
; ð1Þ

where Q is the volumetric flow rate; A is the flow area; k is the
permeability of the porous medium; μ is the dynamic viscosity of the
fluid, and dP is the pressure drop over distance dx in the direction of
flow. The superficial fluid velocity (vs) can be calculated by dividing
the outlet volumetric flow rate (Q) by the total free-flow area (A),
giving an alternative expression for Darcy's Law:

dP
dx

=
μ
k
vs: ð2Þ

For a compressible fluid (assumed an ideal gas) experiencing
isothermal flow, Darcy's Law Eq. (2) can be integrated to produce a
quantitative expression that can be used to calculate permeability
from experimental results. Innocentini et al. (1999a) gives such an
expression:

P2
i −P2

o

2PL
=

μ
k
vs; ð3Þ

where Pi is the inlet pressure; Po is the outlet pressure; P is the
pressure at which μ and (vs) are measured or calculated (P=Pc for
fracture flow in a triaxial experiment carried out at confining pressure
Pc), and L is the flow distance across the experimental sample. The
form of Eq. (3) is such that, knowing μ, k can be obtained from the
slope of the linear curve that that passes through the origin and joins

experimental data points plotted in
P2
i −P2

o

2PL
v. vs space.

The mean pressure (Pm) for an experiment setup can be calculated
from the average of Pi and Po:

Pm =
Pi + Po

2
: ð4Þ
2.1.1. For fracture flow
Fracture flow is often idealised as flow through a volume

bounded by two parallel plates. For such flow geometry, the total
free-flow area is calculated by A=ew, where e is hydraulic aperture
and w is the width of the fracture joint. Witherspoon et al. (1980)
provided an expression for fluid permeability in Darcian flow of an
incompressible fluid through a fracture idealised as a parallel plate
model:

k =
e2ρg
12

; ð5Þ

where ρ is the fluid density, and g is acceleration due to gravity.
After substitution, Darcy's Law for flow of an incompressible fluid

through a fracture becomes:

dP
dx

= Q
12μ

e3wρg
; ð6Þ

and

e =
12Qμ
wρg

dx
dP

� �
1
3: ð7Þ

For Darcian flow of a compressible fluid within a fracture, Eq. (6)
becomes:

P2
i −P2

o

2PL
= Q

12μ
e3wρcg

; ð8Þ

and

e =
12Qμ
wρcg

2PL
P2
i −P2

o

 !
1
3: ð9Þ

For isothermal flow of an ideal gas, gas density is directly
proportional to gas pressure and volumetric gas flow is inversely
proportional to gas pressure. Thus, ρ and Q for a gas at pressure P can
be determined from the known density (ρo) and measured flow rate
(Qo) at (Po), by ρ = ρoP

Po
and Q = QoPo

P , respectively. Eq. (8) is
commonly known as the cubic law.

2.2. Non-Darcian flow

As fluid velocity increases and flow within the porous or
fractured media becomes non-Darcian, dependence between the
pressure gradient term and the velocity term of Darcy's Law
becomes non-linear (Forchheimer, 1901) — i.e. permeability
becomes dependent on flow velocity. This dependency is related
to the influence of inertial effects.

2.2.1. The Reynolds number in flow through fractured media
The Reynolds number, proposed by Reynolds (1883), provides an

indication of flow regime (laminar v. non-laminar) based on the
geometry of the flowing system and the properties of the fluid. It can
be expressed as:

Re =
ρQl
μA

; ð10Þ

where l is the characteristic dimension of the flow system. For flow
between two parallel plates, with w≫e (as in an idealised case of
fracture flow) l=e (Fox et al., 2004), and thus:

Re =
ρQ
μw

: ð11Þ



Fig. 1. Photo of the fractured granite specimen used for the experimental work.
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2.2.2. The Forchheimer equation for inertial effects
Forchheimer (1901) introduced an empirical constant to account

for the non-linearity of Darcy's Law at high flow rates, producing a
modified version of Eq. (2) of the form:

dP
dx

=
μ
k
vs + ρβv2s ; ð12Þ

where β is an empirical constant that accounts for the dependency of k
on vs. Eq. (12) can be written as:

dP
dx

=
μ
k0

vs 1 + Foð Þ; ð13Þ

where k0 is the permeability limit for the system as vs→0, and Fo is
the Forchheimer Number, given by Fo = ρk0βvs

μ . Eq. (13) shows that, as
Fo→0, inertial effects become negligible and Forchheimer's equation
reduces to Darcy's Law.

For a compressible fluid (assumed an ideal gas) experiencing
isothermal flow, Eq. (12) can be integrated to produce a quantitative
expression that can be used to calculate permeability from experi-
mental results. Innocentini et al. (1999b) gives such an expression:

P2
i −P2

o

2PL
=

μ
k1

vs +
ρ
k2

v2s ; ð14Þ

where k1 can be thought of as the Darcian (viscous) permeability, and
k2 as the non-Darcian (inertial) permeability. Both k1 and k2 can be
considered as properties only of the porousmedium. The values of μ, ρ
and vs used in Eq. (14) should be those measured at pressure P.
Considering the Forchheimer Number, Eq. (14) can be rewritten as:

P2
i −P2

o

2PL
=

μ
k1

vs 1 + Foð Þ; ð15Þ

where Fo = ρk1vs
μk2

.
The form of Eq. (14) is such that the k1 and k2 can be obtained from

the coefficients of the quadratic function that best fits the experi-

mental data points, plotted in
P2
i −P2

o

2PL
v. vs space.

3. Experimental procedure

3.1. Sample information

All laboratory work was carried out using a cylindrical granite
specimen 104 mm in length and 54 mm in diameter. The cylindrical
sample had a single, natural, sub-vertical fracture running the length
of the core (Fig. 1). The matrix permeability for the granite used in the
laboratory program is low (approximately 10−19 m2, Ranjith et al.,
2006, p. 219) and can be assumed to be negligible in comparison with
the fracture permeability. Thus, flow in the experiments can be
considered to have occurred solely by fracture flow.

Qualitatively, the joint surfaces appeared to join well together, the
joint was relatively smooth, and showed no evidence of prior shear
displacement. During the testing, the sample was placed in a rubber
membrane to minimise flow losses and thus ensure the test setup
obeyed the assumption of a closed flow system.

3.2. Experimental setup

Permeability tests were performed for the fractured granite
specimen using a high-pressure triaxial apparatus, capable of
measuring two-phase flow through rock samples loaded under axial
and confining stress (Fig. 2), though for these experiments only
single-phase (air) flow was investigated. Axial loading for the tests
was achieved through porous stone platens which allowed injection
and collection of the flowing fluid. A servo-controlled Instronmachine
was used to maintain a 1.89 MPa axial load on the specimen for all
tests. To investigate the affect of fracture normal confining stress on
flow behaviour, a series of tests were carried out at five different
confining stress values of 550 kPa, 1000 kPa, 2000 kPa, 3000 kPa and
5000 kPa. Hydraulic oil was used as the cell confining fluid and
confining stress was applied using a hydraulic pump. The magnitude
of the confining pressure was recorded using a pressure transducer
that carries a combined total error band of ±0.75% of the maximum
measurement.

Once the sample had been taken to the test confining pressure, the
test fluid (air) was pumped from the fluid amplification device (an air
compressor) to the porous stone platen at the bottom of the sample and
collected from an outlet hose connected to the porous stone platen at the
top of the sample. Airflow rates through the outlet hose were measured
by a film flowmeter to a reported accuracy of ±0.5%. Back flow of liquid
from the sample was prevented with the use of a check valve at the inlet
flow supply. The magnitudes of inflow and outflow fluid pressures were
recorded by two independent pressure transducers. The reported
combined total error band for the pressure transducers was ±0.75%
of the maximum measurement. Various experiments at differing air
injection pressures were performed for each confining pressure to
produce five independent datasets — i.e. 550 kPa, 1000 kPa, 2000 kPa,
3000 kPa and 5000 kPa confining pressure datasets. Total errors on the
various experimental measurements were estimated at ±1.0%.

4. Results and discussion

Table 1 summarises the results of the experimental work for the
550 kPa, 1000 kPa, 2000 kPa, 3000 kPa and 5000 kPa confining
pressure experiments, in the form of outlet flow rate measurements
corresponding to various inlet and outlet gas pressure combinations.
Fig. 3 illustrates themanner bywhichmeasured outlet flow rates from
the various experiments varied with mean pressure, as calculated
from the inlet and outlet pressures in accord with Eq. (4).

From Fig. 3, it can be seen that the measured outlet flow rate is
approximately linearly proportional to mean pressure for all measure-
ments made on the 550 kPa, 1000 kPa and 2000 kPa confining pressure
experiments and all but the measurement made at the highest mean
pressure for the 3000 kPa confining pressure experiment. In the case of
the 5000 kPa confining pressure experiment, the four lowest mean
pressure measurements obey approximate linearity between mean
pressure and outlet flow rate. The linearity of the measured outlet flow
v. mean pressure plots is consistent with a Darcian gas flow regime
within the fracture, for the majority of the experimental data. Thus, we
have assumed that each of the experimental flow cases obeyed Darcian
linearity to an extent where the cubic law (9) can be used to estimate



Fig. 2. Experimental setup (after Ranjith et al., 2006, p. 219).

Table 1
Summary table of experimental measurements and calculated flow values.

Cell
pressure
(kPa)

Air inlet
pressure
(kPa)

Air Outlet
pressure
(kPa)

Measured flow
rate (mL/min)

Calculated hydraulic
aperture (μm)

Calculated superficial
flow velocity (m/s)

Calculated
permeability×1011

(m2)

Calculated
Reynolds
number

Calculated
Forcheimer
number

550 125 100 5.1 2.688 0.106 3.898 0.10 0.013
550 150 100 15 2.951 0.285 4.699 0.31 0.034
550 200 100 46 3.202 0.806 5.533 0.95 0.097
550 250 100 79 3.182 1.393 5.464 1.63 0.168
550 300 100 102 3.011 1.901 4.893 2.10 0.230
550 350 100 131 2.922 2.516 4.606 2.70 0.304
550 400 100 159 2.832 3.151 4.326 3.27 0.381
550 450 100 191 2.770 3.870 4.139 3.93 0.468
1000 300 100 44 1.864 0.728 3.409 0.91 0.104
1000 400 100 68 1.748 1.201 2.997 1.40 0.171
1000 500 100 99 1.694 1.804 2.814 2.04 0.256
1000 600 100 132 1.644 2.478 2.651 2.72 0.352
1000 700 100 166 1.597 3.208 2.502 3.42 0.456
1000 800 100 192 1.531 3.870 2.300 3.95 0.550
2000 300 100 34 1.358 0.386 3.617 0.70 0.199
2000 400 100 51 1.260 0.624 3.117 1.05 0.322
2000 500 100 69 1.192 0.893 2.787 1.42 0.461
2000 600 100 92 1.157 1.227 2.626 1.89 0.633
2000 700 100 113 1.115 1.564 2.440 2.33 0.807
2000 800 100 128 1.062 1.861 2.211 2.63 0.960
2000 900 100 142 1.015 2.159 2.021 2.92 1.114
2000 1000 100 157 0.978 2.479 1.875 3.23 1.279
3000 300 100 29 1.125 0.265 3.724 0.60 0.113
3000 400 100 45 1.056 0.438 3.283 0.93 0.187
3000 500 100 65 1.021 0.655 3.066 1.34 0.280
3000 600 100 88 0.996 0.909 2.918 1.81 0.389
3000 700 100 105 0.951 1.136 2.659 2.16 0.486
3000 800 100 123 0.915 1.383 2.465 2.53 0.591
3000 900 100 138 0.878 1.617 2.270 2.84 0.691
3000 1000 100 153 0.847 1.859 2.109 3.15 0.795
3000 1100 100 178 0.835 2.193 2.052 3.66 0.937
3000 1600 100 202 0.678 3.067 1.351 4.16 4.592
5000 600 100 67 0.767 0.539 2.885 1.38 0.363
5000 800 100 103 0.728 0.874 2.597 2.12 0.589
5000 1000 100 128 0.673 1.174 2.221 2.63 0.791
5000 1200 100 157 0.637 1.521 1.991 3.23 1.025
5000 1400 100 169 0.589 1.772 1.701 3.48 2.320
5000 1600 100 179 0.549 2.013 1.478 3.68 2.636
5000 1800 100 194 0.521 2.298 1.332 3.99 3.009
5000 2000 100 206 0.495 2.566 1.204 4.24 3.360
5000 2200 100 234 0.485 2.978 1.154 4.81 3.899
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Fig. 3. Measured outlet flow rate v. mean pressure for all experiments with a linear fit to the data. Results for confining pressures of 550 kPa, 1000 kPa, 2000 kPa, 3000 kPa and
5000 kPa each plotted separately. Data that deviate from an approximately linear relationship between outlet flow and mean pressure are circled.

Fig. 4. Calculated representative Darcian gas permeability v. reciprocal mean pressure
for experiments carried out at confining pressures of 550 kPa, 1000 kPa, 2000 kPa,
3000 kPa and 5000 kPa.
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aperture thickness, assuming a gas (air) density of 1.20 kg/m3 at room
temperature (20 °C) and atmospheric pressure (100 kPa) and an air
viscosity of 1.8×10−5 Pa s at room temperature. Flow area for the
fracturewas calculated from the hydraulic aperture (determined by the
cubic law) multiplied by the sample diameter. The superficial flow
velocitywas then estimated by dividingmeasured values for outlet flow
rate by calculated values for flow area. The calculated superficial flow
velocity was substituted into Eq. (3) to determine a ‘representative
Darcian permeability’ for each experimental measurement. Calculated
values for hydraulic aperture, superficial flow velocity and representa-
tive Darcian permeability are summarised in Table 1.

Fig. 4 shows that the ‘representative Darcian permeability’ is
dependent on the reciprocal mean pressure of flow (i.e. the inverse of
the mean pressure of flow calculated from Eq. (4)). This dependency
may be related to inertial effects or to the influence of gas slippage
(see Adzumi, 1937; Klinkenberg, 1941). In the case of the gas slippage
effect, the theoretical dependence between gas permeability and
reciprocal mean pressure is linear and positive (Klinkenberg, 1941).
The slopes of the curves of Fig. 4 vary with the reciprocal mean
pressure. Thus, it is likely that permeability dependence on mean
pressure (Fig. 4) is related to inertial effects on the fracture flow and
not gas slippage.

The pressure drop (calculated from the inlet and outlet flow
pressure data, the confining pressure and sample length) can be
plotted against the calculated superficial velocities for the various
experiments to give a graphical representation of Darcy's Law, in
accordance with Eq. (3). Such plots for all data from the various
confining pressure experiments are given in Fig. 5.
Fig. 5 demonstrates that the data expressed on these Darcian plots
are better approximated using a quadratic fit – in the form of the
Forchheimer Eq. (14) – than using a linear fit. This is particularly the
case for the data from the 3000 kPa and 5000 kPa confining pressure
experiments, which showed deviation from linearity for high mean
pressures in the measured outlet flow rate v. mean pressure plots of
Fig. 3. The results for the 3000 kPa and 5000 kPa confining pressure
experiments are replotted for only those test data that obeyed
approximate linearity (see non-circled data points of Fig. 3) in Fig. 6.

image of Fig.�3
image of Fig.�4


Fig. 5. Pressure drop v. calculated superficial flow velocity plots for all experiments. Results for confining pressures of 550 kPa, 1000 kPa, 2000 kPa, 3000 kPa and 5000 kPa each
plotted separately. Trendlines show quadratic fit to the experimental data.
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Though the curvature in the reduced dataset of Fig. 6 is not so
pronounced as for their equivalents of Fig. 5, the data still shows a
form which would be better approximated by a quadratic fit than a
linear fit.

The quadratic fits for the flow cases of Figs. 5 and 6 suggest that the
Forcheimer number for these flow cases (Eq. (15)) is greater than zero
andflowmust incorporate a non-linear component— i.e. permeability is
dependent on flow velocity and contravenes Darcy's Law. The cubic law
(9) that was used above for analysis of the flow data is appropriate only
Fig. 6. Pressure drop v. calculated superficial flow velocity plots for confining pressures of 3
linearity (i.e. the non-circled data of Fig. 3). Trendlines show quadratic fit to the experimen
for Darcian flow (Witherspoon et al., 1980). The applicability of the
cubic law in the analyses presented here must thus be reviewed.

Approximations to the Darcian (k1) and non-Darcian (k2) perme-
abilities of Eq. (14) can be found (using values for air density and
viscosity as above) from the linear and quadratic coefficients,
respectively, of the quadratic fits from Figs. 5 and 6. Table 2 summarises
the coefficients from the quadratic fits to the experimental data (see
Figs. 5 and 6) and shows Darcian and non-Darcian permeabilities
calculated from these.
000 kPa and 5000 kPa. Plots only consider those data of Fig. 3 that obeyed approximate
tal data.
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Table 2
Summaryof coefficients for quadraticfits shown in Figs. 5 and6andDarcianandnon-Darcian
permeabilities calculated from these. Table entries shaded in grey considered non-linear data
points from Fig. 3.

Confining 
pressure

Data Linear 
coefficient

Darcian 
permeability 
× 1011 (m2)

Quadratic 
coefficient

Gas 
density 
(kg/m3)

Non-darcian
permeability 
× 104 (m)

550 kPa All 0.2978 6.044 0.0360 6.6 1.833
1000 kPa All 0.5017 3.588 0.0713 12 1.683
2000 kPa All 0.4195 4.291 0.2165 24 1.109
3000 kPa All 0.2314 7.779 0.3464 36 1.039
3000 kPa Linear data, 0.4613 3.902 0.1972 36 1.826

5000 kPa All 0.3281 5.486 0.4296 60 1.397
5000 kPa Linear data, 0.4472 4.025 0.3014 60 1.991

(kPa)

Fig. 3

Fig. 3

included
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If only the data that obeyed approximate linearity in Fig. 3 are
considered (i.e. shaded rows of Table 2 were not considered) the non-
Darcian permeabilities are relatively constant for the various confining
stress experiments. The Darcian permeability for the 550 kPa confining
pressure case shows the greatest permeability and the Darcian
permeabilities become relatively uniform for the higher confining stress
tests – reflecting a permeability decrease of diminishingmagnitude with
increasing confinement (see Brace et al., 1968) – as one might expect.
Thus, the Darcian and non-Darcian permeabilities of Table 2 show good
agreement for the various experiments (at differing confining pressure),
where only the data that obeyed approximate linearity in Fig. 3 are
considered. This result supports a case for the applicability of the cubic
law for use as a method for initial determination of superficial flow
velocities (from the hydraulic aperture and resultant flow area) in non-
linear flow cases. However, Table 2 shows that when the data that
departed from approximate linearity in Fig. 3 are considered (i.e. the
shaded rows of Table 2), agreement between the calculated Darcian and
non-Darcian permeabilities from the various experiments (at differing
confining pressure) becomes more tenuous. Thus, it can be seen that the
cubic law (9) provides a less satisfactory expression to determine
superficial flow velocities as the non-linearity of flow increases.

Reynolds numbers for each test, calculated from the measured
flow rate and test specimen dimensions, in accord with Eq. (11), are
given in Table 1. Re for the approximately linear flow cases of Fig. 3
vary between Reb4 for the lowest confining pressure experiments
and Re≤3.5 for the higher confining pressure experiments. Fracture
flow with Re≥1 displays some degree of non-linearity (Bear, 1972;
Zimmerman et al., 2004). However, the cubic law appears to remain
applicable for initial analysis of fracture flow in non-Darcian flows
where Re≤3.5 or even Reb4, depending on the confining pressure for
the fracture flow. The Re for the transition between fields where the
cubic law is valid and where it is not valid for the analysis of flow data
is dependent on flow pressure and thus will not be independent of the
test conditions. Ruth andMa (1992) and Garrouch and Ali (2001) have
suggested that, due to microscopic effects relating to interaction
between the solid and flowing fluid in non-Darcian porous flow
scenarios, Fomay provide a better indication of the degree of influence
of inertial effects on flow than Re. Fo number can be calculated from the
ratio of the quadratic coefficient to the linear coefficient, for the
quadratic fits of Figs. 5 and 6, multiplied by the superficial velocity (15).
Table 2 shows that for all the cases where the cubic lawwas applicable,
Fob1.30. We recommend that results obtained from the analysis of
fracture flow by the cubic law be treated with suspicion where the
results of the analysis indicate that FoN1.30.

5. Conclusions

The influence of inertial effects on the flow of fluids through
fractured media is a topic of interest for a number of industries,
including numerous applications within the energy sector (e.g.
production from gas and oil reservoirs, heat extraction from enhanced
geothermal systems, coal-bed methane production). The cubic law
relates the hydraulic aperture of a fracture to its permeability, for a
given fluid experiencing Darcian flow. The extent of the applicability
of the cubic law to flow scenarios that incorporate non-Darcian flow is
not fully understood.

Flow rate data collected from experiments carried out on air flow
through a fractured granite specimen, loaded under triaxial condi-
tions, were reported. Analysis of the flow rate data to obtain flow
velocities was carried out using the cubic law, and the coherence of
the results obtained was reviewed. Analysis showed that, for flow
conditions with moderate non-Darcian behaviour (i.e. flow with
‘weak’ inertial effects) the cubic law could be successfully applied to
obtain meaningful results. The applicability of the cubic law to the
non-Darcian flow case was limited to scenarios for which Re≤3.5 to
Reb4, depending on flow pressure. Fo, determined assuming that the
cubic law was valid for the flow system, provides a measure for the
applicability of the cubic law that is more robust than the Re (i.e. is
relatively independent of flow conditions). The results of our work
show that application of the cubic law for calculation of flow velocity
from flow rate data is valid for flow cases that, following analysis using
the cubic law, return Fob1.30.
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